Briefing to the ESSAAC Technology Subcommittee (TSC)

on

Technology Development for Radiometry Antennas

David Kunkee The Aerospace Corporation April 13, 2004

Process of Determining Technology Challenges

Measurement Parameters defined by ESTIPS: http://esto.nasa.gov/estips

 Measurement Scenarios: 19 Included Passive Measurements (Final Count)

The Working Group Reviewed Measurement Scenarios

- Added scenarios that were missing: (A1, A2, H1, H2, H3, O1)
- Attempted to identify scenarios that were obsolete, or otherwise did not require technology development

Determined Technology Challenges Associated with Each Scenario

- Flowed Technology Challenges From the Measurement Scenario
- Passive Technology Challenges included Antenna, RF Electronics, Processing, and System Areas

Developed Capability Breakdown Worksheet (CBS)

- Defined Tasks to Develop Each Technology Challenge
- Level of Effort, Beginning and Ending TRL, and Cost were Estimated

Measurement Parameters

Measurement Parameters	Focus Science Areas	Measurement Scenarios	
Snow Cover, Accumulation	Water & Energy Cycle	106, 107, 108, H2, C2	
and Water			
Freeze/Thaw Transition	Water & Energy Cycle	H1	
(Growing Season)			
Global Soil Moisture	Water & Energy Cycle,	34, 38, 111, 177, H3	
	Weather, and Climate		
	Variability & Change		
Global Precipitation	Water & Energy Cycle and	67, 176, A1,A2	
	Weather		
Sea Surface Salinity	Climate Variability &	34, 38, 111	
	Change		
Sea Surface Temperature	Climate Variability &	01	
	Change		
Atmospheric Temperature	Water & Energy Cycle and	67, 176	
	Weather		
Atmospheric Water Vapor	Water & Energy Cycle and	67, 176	
	Weather		
Ocean Surface Winds	Weather	A2	
Ozone Profile	Atmospheric Composition	140	
Cloud System Structure	Atmospheric Composition	143	
Wet Path Delay	Solid Earth (Geodesy)	53	
-	•		

THE AEROSPACE

3

Measurements and Scenarios

Radiometer Antenna Concepts	Criticality	Utility (scenario ID)		
Real Aperture (25m) Rotating; 1.4+ GHz	Enabling	34		
Real Aperture (25m) Torus; 1.4+ GHz	Enabling	111		
2D STAR (25m) Scalable; 1.4+ GHz	Enabling	H1, H2, H3, 34		
2D STAR (15 – 20m) Membrane; 1.4+ GHz	Enabling	177 106, O1		
Real Aperture (6-7m) Rotating 6-37 GHz	Enabling			
2D STAR (6m) 18/37 GHz	Enabling	107, C2		
1D STAR (6x12m) 10/18/37 GHz	Enabling	108, A1, A2		
Real Aperture (3-4m) 50/183 GHz	Enabling	176		
2D STAR (3-4m) 50/183 GHz	Enabling	67		
mmw/smmw/Far-IR (2-4m) 183+ GHz	Enabling	140, 143		

THE AEROSPACE CORPORATION 4

Requirements of Future Radiometer Antennas Trying to achieve: Quantitative Requirements in 6 Science Focus Areas 1) 10 km Horizontal Spatial Resolution (HSR) from LEO at 1.4-GHz for Soil Moisture and Sea Surface Salinity Measurement Scenarios 2) 5 km HSR at 18- and 37-GHz for Snow Cover, SWE, Cold Lands Hydrology Radiometer 3) 50- and 183-GHz measurements from GEO Antenna Requirements with 3 - 4 meter aperture 4) Millimeter/Sub-millimeter wave antennas scanning and non scanning for atmospheric composition and limb Capability Breakdown Structure (CBS) sounding 5) 10 km HSR at 6/10-GHz for SST Implementation Plan And Roadmaps

THE AEROSPACE CORPORATION

Definition of Technology Challenges

Define Technology Challenges for Radiometer Antennas

- Definition Based Upon Specific Antenna Concepts
 - Input Was Obtained From Technologists Within the Microwave Radiometry Community
- Consider the "Building Blocks" That Need Development
 - Extend Capability of Remote Sensing Measurements Within Program Constraints
 - Good Planning and Investment Provides Significant Cost Reduction in Advancing New Systems to Higher TRLs

Technology Challenges were Defined for All Antenna Concepts That Enabled Measurement of New Parameters

• Example: Torus Antenna is Provided Next

Antenna Technology Histogram

Antenna Technology Challenge	Scenario Count	Parameter Count
Antenna Component Items		
Multi-frequency feeds with high beam efficiency	14	10
Combined active passive feeds	11	6
Low Cross polarization antenna elements	6	4
Antenna Arrays		
Waveguide arrays	6	4
Microstrip Patch arrays	11	6
Multi frequency multi-polarization arrays	16	11
Feed clusters/focal plane arrays	13	9
Structural Elements		
Lightweight structural elements	12	10
System Level Designs		
Precision deployable/inflatable structures (other than reflectors	s) 8	6
Deployables large aperture	9	7
Millimeter wave/Submillimeter Wave antennas	4	5
		THE AFROS
		THE AE

Antenna Technology Histogram (Cont'd)

	Precision Control and System Challenges	Scenario Count	Parameter Count
Г	Precision Control		
	Precision Antenna Pointing (momentum compensation)	3	4
	Antenna Metrology	8	7
	Precision Thermal Control	6	4
L	Control of Spinning apertures (balancing)	4	4
	System		
	Cryo-Cooler	1	1

Radiometer Antenna Technology Developments Quantitative Requirements in 6 Science Focus Areas

The Next Charts Will Describe Detailed **Developments from the CBS**

Low Profile Lightweight Low-Loss Array Feeds For STAR and Pushbroom arrays

Current Status

- L-band single elements and small arrays of dual-polarization patch antennas with good bandwidth and polarization properties have been demonstrated. However, these utilize relatively heavy standard teflon-glass laminates, and are not viable for 25 m length linear arrays for 2-pol and 3-pol operation.
- X-, Ku-, and Ka-band STAR or pushbroom arrays require novel antenna designs that can provide low loss dual-polarization conical scan.

Tasks needed

- Demonstrate performance of sub-array configurations using lightweight laminations of multiple stacked patches on thin substrates with foam or other low relative dielectric constant layers, adaptable to 1D or 2D STAR arrays.
- Hybrid patch arrays on thin substrates excited by waveguide crossed-slot arrays and combined with shaped reflectors need to be developed and demonstrated.
- Expand on current waveguide array (WGA) designs (e.g. LRR airborne instrument) with higher frequencies, wider bandwidths, dual-polarization and conically-scanned versions
- Model and trade cross polarization levels of Microstrip (MS) patch and WGA elements with other parameters during development
- Develop and demonstrate antenna feed system that meets L-band bandwidth 1.26 – 1.4 GHz, isolation and beam efficiency requirements for shared active/passive aperture

Current (3) Array performance TRLs: (2) Lightweight materials

Exit TRL: (6)

Steerable Subreflectors For Calibration of Large Apertures Radiometers

Concept

MEMS-switched frequency selective surface (FSS) dual frequency sub-reflector

Provides the ability to electrically steer large focal plane and focal line arrays away from main reflector and to cold space for endto-end system calibration

Apply to FPA for torus antenna – and/or other antenna concepts

Status

- Frequency/reflectivity selective surface (RSS) concept applied to radiometry: TRL 2
- Other concepts needed for end-toend calibration

Tasks needed

- Adapt existing MEMS-based Frequency Selective Surface technique to RSS application (TRL 2 3).
- Develop a prototype RSS based subreflector antenna system. Characterize loss, reflectivity, impact on other radiometer figures of merit.
- 3. Develop a focal line array using RSS subreflector (TRL 3-4).
- Combine RSS focal line array with laboratory radiometer and verify system calibration and stability (TRL 4 to 5).
- Build field deployable instrument and use in science campaign. Verify ability to retrieve Level 2 EDRs with acceptable accuracy and uncertainty. (TRL 5 to 6).

Current TRL: 2 Exit TRL: 6

17

Lightweight Structural Elements

Tasks needed

- Trade study involving best candidate concepts for support elements integrated with the desired electronics/antenna elements
- Develop the structural support arm concept, build a nondeployable version and test structural characteristics
- 3. Develop deployable arm/column
- Deployment test and structural characteristics test/verification

Requirements

- Less than 0.1 kg/m and must be able to support distributed science sensing element mass, data and power cabling integrated into the structure
- 2. Self Correcting to $\lambda/20$ (RMS) surface distortion

Current TRL: 3 Exit TRL: 6

Detailed Radiometer Antenna Developments

The Next Charts Show Developments from the of the Specific Radiometer Antenna Concepts

Large Rotating Reflector

Tasks needed for 6 – 20 m rotating reflector

- 1. Develop optimal system design based on science requirements
- 2. Lightweight deployable reflector
- Design reflector boom feed stowage relative to projected designs and capabilities
- Develop and test multi frequency multi-polarization horn or patch feed design matched to reflector geometry to meet overall beamwidth, beam efficiency and cross polarization requirements
- 5. Design and test momentum compensation and balancing
- Analyze thermal and mechanical distortions, calibration system, and overall system error budget and performance
- 7. In support of #3 develop antenna metrology and compensation techniques to ensure minimum performance can be met

Current Status

- 1. HYDROS 6m rotating aperture: scheduled for launch in 2009
- Feedback suggests 20 25 m may be upper range of feasibility for rotating aperture – for larger apertures should consider stationary parabolic torus antenna – system trades involving industry are needed

Current TRL: 4
Exit TRL: 6

Large Deployable Non-Rotating Reflector Antenna (Torus)

Tasks needed in support of ~50 m parabolic torus

- Develop optimal system design based on science requirements
- Design reflector boom feed stowage relative to projected designs and capabilities (50m X 25m parabola)
- Develop and test multi frequency multi-polarization subreflector and patch array feed design matched to the reflector geometry to meet overall beam width, beam efficiency and polarization requirements
- Design and test momentum compensation (for the feed system) and balancing
- Analyze thermal and mechanical distortions, calibration system, and overall system error budget and performance
- 6. In support of #3 develop antenna metrology and compensation techniques to ensure minimum performance can be met

Current Status

- 1. HYDROS 6m rotating aperture: scheduled for launch in 2009
- Feedback suggests 20 25 m may be upper range of feasibility for rotating aperture – for larger apertures should consider stationary parabolic torus antenna – system trades involving industry are needed

Current TRL: 4
Exit TRL: 6

01

2D STAR With Antenna Feedhorns

Tasks needed to support STAR development

- 1. Scalability for GEO flight design concepts
- 2. Extrapolate design to 183 GHz case
- 3. Low recurring cost for large scale fabrication of identical units
- Evaluate different feedhorn options: conduct camber test and modify feedhorn design as needed
- 5. Integrate into laboratory interferometer testbeds
- 6. Integrate into field deployable prototypes
- 7. Conduct thermal and mechanical studies in parallel with above

Requirements

- Flood beam element patterns with ultra-low mutual coupling, lowloss, and ultra stable phase center location vs. temperature
- 2. < 30dB mutual coupling between immediately adjacent antennas
- 3. < 0.2dB ohmic losses below 50 GHz; <0.3dB at 50/60, 183 GHz
- Phase center stability to λ/100 over –40 to +40C temperature range

Status

Current GEOSTAR
 prototype has adequate
 performance for an
 electrically-small design

Current TRL: 3+ Exit TRL: 6

2D STAR

With Ultra-lightweight Elements and Tensioned Membranes

Tasks needed to support STAR antenna development

- Develop ultra-lightweight deployable antenna technology using tensioned panels and membranes with integrated RF electronics and antenna elements
- 2. Develop non-deployable test article
- 3. Develop antenna metrology and aperture control methodology
- 4. Characterize structural dynamics
- 5. Integrate low power radiometer electronics onto/into antenna element and structure in a non-deployable scale model
- 6. Develop flight like tensioned membrane panels
- Analyze thermal and mechanical distortions and investigate thermal monitoring of micro-miniature electronics

Current Status

- 1. STI -- Phase 0 studies ongoing
- One-third scaled test article under development

Requirements

- . λ/20 RMS
- 2. ~20m (full size) diameter
- 3. Lightweight, low loss integrated arrays

Current TRL: 2+

Exit TRL: 4-5

~

1D STAR

With Lightweight ~6m parabolic cylinder reflector

Tasks needed for 1D STAR development

- Demonstrate lightweight reflector/feed system deployment and electrical performance.
- Design reflector and support structure.
- Design high efficiency, low mutual coupling, lightweight line feed array compatible with antenna structure; dual frequency/dual polarization
- 4. Lightweight compact 6x12-m parabolic cylinder reflector
- Antenna metrology and compensation of reflector distortion

Requirements

- 1. Dual polarization at 18 & 37 GHz.
- Spatial resolution of 5-km with similar imaging performance compared to a real aperture conical imager.
- Large (>6x12 meter) cylindrical parabolic reflector fed by linear feed stowable/deployable.

Status

- 1. Study underway at BATC
- Measurement scenario 108

Current TRL: 3 Exit TRL: 6

Millimeter Wave and Sub-mmw Measurements

for Ozone Profile and Atmospheric Composition

MLS instrument on EOS Aura

Current Status

. A conceptual design exists to meet the requirements listed in measurement scenario 140

Tasks for reducing schedule/cost risk in development

- Demonstrate mathematical design (using geometrical and physical optics) that allows very broad scanning in azimuth
- Develop a structural concept for the scanning antenna system with fabrication of breadboard units

Antenna System Requirements

- Antenna system for scanning Earth's limb with ~2 km vertical and ~20 km horizontal resolution at 200 GHz
- 2. Reflector surface accuracy of ~10 micrometers
- Capability of vertically-scanning ~ 1 degree in ~10 s, and azimuth scanning ~ ±75 degrees in ~0.5 s.

Current TRL: 2 Exit TRL: 4 - 5

THE AEROSPACE

05

Passive Antenna Integrated Technology Roadmap (2004-2015)

Back Up Slides

Measurement Scenarios for Passive Remote Sensing

Hydrology

- 2D STAR; 25 meter diameter L-band
- Rotating real 25 meter real aperture
- 2D STAR 6m; Snow Water Equivalent (SWE) L, C, X, W-band
- 1D STAR 18- and 37-GHz

Atmosphere

- Tropospheric Ozone; 140
- Cloud Structure; 143
- Precipitation and Atmospheric Temperature, 67
- Ocean Surface Winds and Precipitation A1, A2

Oceans

· Sea Surface Salinity

Cryosphere

• Snow Cover 19 - 37; 6m

